X
تبلیغات
شیمی

شیمی

این وبلاگ محتوای جدید اخبار شیمی و مطالب گوناگون علم شیمی می باشد.

راکتور هسته ای



تصویر
زباله‌های هسته‌ای ، مشکل بزرگ محیط زیست

دید کلی

راکتورهای هسته‌ای زباله‌های رادیواکتیوی تولید می‌کنند که از خود ، ذرات آلفا ، بتا و اشعه گاما متصاعد می‌کند. ذرات آلفا را می‌توان بوسیله یک صفحه کاغذ و یا چند سانتی‌متر هوا و ذرات بتا را می‌توان بوسیله فلز نازک و یا چند متر هوا متوقف کرد. در حالی‌که اشعه‌های گاما بوسیله چندین سانتی‌متر سرب و یا حتی سپر سنگی اضافه متوقف می‌شوند، چون ذرات آلفا از همه بزگترند، بیشترین آسیب را می‌رسانند. امّا اشعه گاما بیشترین نفوذ را دارد.

معمولا زباله‌ها را برحسب منشآ آنها دسته‌بندی می‌کنند و عبارتند از گازها ، محلولهای رقیق و جامدات. گرچه زباله‌های هسته‌ای غیر نظامی در مقایسه با دیگر زباله‌های هسته‌ای حجم بسیار کمتری دارد، اما ایزوتوپهایی مانند Sr__ است که در ساختمان ماده به جای کلسیم می‌نشیند و ضایعات ناشی از تشعشع را در یک نطقه متمر کز می‌کند . نیم عمر بسیاری از این ایزوتوپهای زباله‌های هسته‌ای آنچنان طولانی است که باید برای هزاران سال عایق‌سازی شود تا در اثر واپاشی هسته‌ای به سطح ایمنی قابل قبولی برسد.

عایق‌سازی زباله‌های هسته‌ای

بطور کلی ، مشکل عایق‌سازی زباله‌های هسته‌ای را در دو پرسش می‌توان خلاصه کرد: اول بهترین شکل زباله‌ها چیست و دوم اینکه در کجا باید آنها را نگهداری کرد؟ ابتدا تصور بر آن بود که از راه باز فرآوری سوخت مصرف شده می‌توان پلوتونیوم را استحصال کرد و در راکتورهای مولد مورد استفاده قرار داد و اینکه بدین ترتیب تمام زباله‌ها باید به صورت محلول در آورده شود تا موجب تسهیل باز فرآوری شود.

بدلیل نگرانی‌هایی که در مورد سمّی بودن و ایمنی پلوتونیوم در امریکا وجود داشت، برنامه بازیابی سوختهای هسته‌ای در ایالات متحده در سال 1972، باطل شد و راکتورهای نیروگاه‌های برق این کشور از این ماده بهره‌مند نشد. در بهترین حالت ، منطق این تصمیم‌گیری سئوال‌برانگیز است. پلوتونیوم از کادمیوم ، سرب و یا آرسنیک که با واپاشی هسته‌ای از بین نمی‌رود، کمتر سمی است. حداکثر خطر پلوتونیوم زمانی است که بوسیله انسان استشمام شود که بدین ترتیب ذرات آلفا به بافت‌های ریه‌ها صدمه زده ، ممکن است باعث سرطان شود.

افزون برآن ،همانگونه که زباله‌های راکتورهای تجاری در اغلب کشورهای اروپایی بازیابی می‌شود، حجم زیادی از پلوتونیوم موجود در زباله هسته‌ای دفاعی ایالات متحده نیز بازیابی می‌شود. با این وجود ، هنوز در ایالات متحده و کانادا ، سوخت مصرف شده راکتورهای تجاری را عمدتا" در مخازن آب در محل راکتورها نگهداری کرده ، منتظر تصمیم‌گیری در خصوص شکل و محل نهایی دفع آنها هستند. ارسال سوخت هسته‌ای بازیابی شده غنی از پلوتونیوم از فرانسه به ژاپن درسال 1992، بانگرانی‌های زیاد عموم همراه شد.

تصویر

شکل دفع زباله‌های هسته‌ای

شکل دفع زباله‌هایی با سطح بالای تشعشع ، تقریبا" بطور یقین نوعی جامد خواهد بود؛ زیرا هم فشرده‌تر است و هم اینکه ایزوتوپها را از آبکره و زیست کره جدا نگه می‌دارد. روش مهر و موم کردن زباله‌ها در محفظه‌ای از سیمان ، شیشه ، سرامیک و یا سنگ و یا کانی مصنوعی ساخته شده ، بیشترین توجه را به خود جلب کرده است.

در سیستم‌های دفع زباله فرانسه از شیشه ای از جنس سیلیکات استفاده می‌کنند. سوئدی‌ها برخی از زباله‌های هسته‌ای خود را در بشکه‌های مسی نگهداری می‌کنند، زیرا مصنوعات باستان شناسی که از مس آزاد ساخته شده است، هزاران سال است که سالم مانده‌اند، هر چند نگرانی‌هایی ابراز گردیده است مبنی بر آنکه ممکن است برای جوامعی که دستشان از منابع معدنی تهی است، مس هدف جذابی باشد.

محل دفع زباله‌های هسته‌ای

محل دفع زبالهای هسته‌ای ، سالهای متمادی مورد مطالعه قرار گرفته است و توجه کلی از از دفع کمتر محتمل آنها در اقیانوس و یا در زیر کلاهکهای یخ قطبی به این سو جلب شد که بایستی زباله‌ها را دوباره در سنگهایی قرار دهیم که از آنجا امده‌اند. محلهای سنگی دفع زباله‌ها مناسب است، زیرا شانس بهتری دارد که هزاران سال دست نخورده باقی بماند و فرصت لازم برای عایق‌سازی زباله‌ها و در نتیجه واپاشی هسته‌ای آنها به سطح تشعشع قابل قبول را فراهم اورد.


تصویر

این گونه انبارهای سنگی باید از تخلخل و تراوایی ناچیزی برخوردار بوده ، به دور از زمین‌لرزه و یا حوادث طبیعی دیگر باشد. این مطالعات انجام شده بر روی ذخیره اورانیوم اکلو در گابن ، گویای آن است که این محل برای چنین کاری مناسب است. نسبت (U (235 در مقداری از اورانیوم کان‌سار اکلو ، بسیار کمتر از میزان آن در اورانیوم معمولی است و میزان آن در اورانیوم معمولی است و دلیل آن ظاهرا" این است که درحدود 2میلیارد سال پیش هنگامی که هنوز در عمق زیادی قرار داشته ، واکنشهای طبیعی شکافت روی داده و U 235 را به‌مصرف رسانده است.

این مسئله موجب تشکیل یک آزمایشگاه طبیعی برای مطالعه واکنشهای فراورده‌های حاصل از شکاف هسته‌ای در سنگ شده است. گرچه نمی‌توان اکلو را کاملا با راکتورهای تجاری مقایسه کرد، اما بر اساس داده‌های بدست آمده ، فراورده‌های غیر گازی شکافت در آن بر روی سطح کانی‌ها رسیده ، سایر کانی‌های سنگین اطراف جذب شده ، فاصله زیادی را از منبع خود نمی‌پیمایند و این نتیجه برای تبدیل کردن آن به یک محفظه سنگی زباله‌های هسته‌ای دلگرم کننده است.
+ نوشته شده در  چهارشنبه بیست و سوم بهمن 1387ساعت 17:57  توسط   | 

ساختار هسته

ذراتی که اتم را تشکيل می دهند ذرات زير اتمی  می نامند.اين ذرات به دو گروه بزرگ تقسيم می شوند.

 ۱- لیپتونها :که الکترون مشهورترين آنها می باشد

واقعا ذرات بنيادی هستند.

 ۲ـ هادرونها :   هادرونها که ذرات کوچکتر ولی سنگينتراز لیپتونها می باشند ، شامل:

آـ  باريونها :متداولترين باريون  همان پروتونها و نوترونها هستند.

پروتونها و نوترونها بانيروی هسته ای درکنار يکديگر در حجم کوچک هسته قرار می گيرند .

 ب ـ مزون :مهمترين مزونها پيونها و کيونها می باشند.

ذراتی که درهسته اتم جای می گيرند  نوکلئون می ناميم .

درباره ساختار هسته اتم دانشمندان درموارد زير با هم توافق دارند که:

۱ ـ نوکلئونها ( پروتونهاونوترونها ) خاصيتی دارند که متناظر با چرخش اطراف يک محور است . برای مثال ، مشاهدات نشان می دهد پايداری هسته ايی  غيرعادی در حالتی به چشم می خورد که عده پروتونها و يا نوترونها درهسته اتمی برابر با اعداد جادويی : ۲و ۸ و ۲۰ و۲۸ و ۵۰ و۸۲ و ۱۲۶ باشد. اين اعداد دلالت بر لايه های درون هسته ای دارند.

۲ـ درهسته اتم ، الکترون وجود ندارد اما ازهسته گسيل می شود. 

بعضی از اتمها دارای هسته های ناپايدار هستند هسته اين اتمها دچار نوعی تلاشی هسته ای شده واز خود اشعه راديواکتيو ساطع می نمايند و مقدار جزيی از جرم آنها کاسته می شود  ولی انرژی زيادی حاصل می گردد که از رابطه انيشتن می توان آن را محاسبه نمود.                       E = mC2                

    اشعه راديواکتيو بطور عمده شامل:

  ۱ـ اشعه آلفا (α ) که همان هسته اتم هليم می باشد. برای مثال رادون ۲۲۶ در يک تلاشی هسته ايی تبديل به پولونيم ۸۴ و اشعه آلفا می شود .گسيل اشعه آلفا منجر به کاهش  ۲  واحد از عدد اتمی و4 واحد از عدد جرمی  می شود و در ميدان الکتريکی به طرف قطب منفی کشيده می شود.

۲ـ اشعه بتا (β) که همان الکترون می باشد نتيجه تبديل يک نوترون به يک پروتون می باشد عدد اتمی را يک واحد افزايش ولی عدد جرمی تغييری نمی نمايد.مثال، کربن ۱۴ درتبديل به نيتروژن  ۱۴  اشعه بتا ساطع می کند.درميدان الکتريکی به طرف قطب مثبت کشيده می شود

۳ـ اشعه گاما(γ) تابش الکترومغناطيسی با طول موج بسيار کوتاه می باشد که براثر تغيير انرژی درونی هسته صورت می گيرد مشابه با طيف خطی است که از گذار الکترون بين لايه های الکترونی حاصل می شود و تغييری در عدد اتمی وعدد جرمی ايجاد نمی شود .پس در ميدان الکتريکی منحرف نمی شود.

+ نوشته شده در  پنجشنبه نوزدهم دی 1387ساعت 11:40  توسط   | 

ماده ی هفته



تصویر

معرفی

نقره ، یکی از عناصر شیمیایی، با نشانه Ag ، دارای عدد اتمی 47 ، وزن اتمی 107.8682 و در گروه یک فرعی (IB) جدول تناوبی قرار گرفته است. نقره فلزی سفید مایل به خاکستری و براق است و از نظر شیمیایی یکی از فلزات سنگین و از جمله فلزات نجیب و از نظر تجارتی عنصری گرانبها تلقی می‌گردد. نقره یکی از عناصری است که از گذشته های دور و دورانهای باستان بعنوان یک فلز شناخته شده و مورد استفاده واقع میشده و از آن در کتابهای فراعنه مصری ، که قدمت این کتابها به حدود 3600 سال قبل از میلاد مسیح بالغ می‌گردد، بعنوان فلزی که از نظر ارزش دارای {5}{2}frac\ ارزش طلا است، یاد شده است. از نقره ، 25 ایزوتوپ رادیواکتیو شناخته شده اند که دارای اجرام اتمی 102 الی 117 می‌باشند. نقره معمولی از دو ایزوتوپ با جرمهای 107 و 109 تشکیل شده است.

منابع طبیعی

نقره جزء عناصر نسبتا کمیاب بوده و از نظر فراوانی در قشر جامد زمین ، در مرتبه شصت و سومین عنصر قرار دارد. این عنصر تشکیل دهنده حدود6-10 ×1% از پوسته زمین است. برخی اوقات نقره بصورت عنصر آزاد یافت می‌شود (نقره خالص) و گاهی نیز به صورت آلیاژ با سایر فلزات ملاحظه می‌شود. در هر صورت باید توجه داشت که در اکثر نقاط، نقره بصورت مواد معدنی حاوی ترکیبات نقره ملاحظه می‌شود. مهمترین کانیهای نقره عبارتند از: آرجنتیت (Ag2S,argentite) و سرارجیریت (AgCl ,horn silver,Ceragyrite).
از سوی دیگر تعدادی از کانیهایی که در آنها نقره با سولفیدهای سایر فلزات ترکیب شده است نیز وجود دارد که عبارتند از: استفانیت (stephanite) بفرمول(5Ag2S.Sb2S5) ، پلی بازیت (polybasite) بفرمول (Cu_2S, Ag_2S).(Sb_2S_3, As_2S_3)، پروستیت(proustite) بفرمول (3Ag_2S.As_2S_3)و پیرآرجیریت (pyrargyrite) بفرمول (3Ag_2S.Sb_2S_3).
حدود سه چهارم نقره تولیدی ، در حقیقت فراورده جانبی حاصل از استخراج سایر فلزات است. علاوه بر این ، مقدار مهمی از نقره نیز از طریق بازیافت سکه‌های از رده خارج شده که باید با مقداری نقره ممزوج شونده و یا از مقدار نقره آنها کم شود، جمع آوری می‌گردد.همچنین بازیافت نقره از قراضه های صنعتی که ضمنا شامل باقیمانده های عکاسی است، با اهمیت تلقی می‌گردد.

خصوصیات فلز نقره

نقره خالص فلزی براق و نسبتا نرم است که تا اندازه ای سخت تر از طلاست. زمانیکه این فلز پرداخت شود، دارای درخشندگی می‌شود و می‌تواند 95% از نور تابیده به خود را بازتاب نماید. این عنصر در میان کلیه فلزات ، مقام بهترین رسانا در زمینه گرما و الکتریسیته را دارا است و در زمینه قدرت چکش خواری و مفتول شوندگی دارای مرتبه دوم پس از طلا است. چگالی نقره 10.5 برابر آب است، بصورتیکه یک متر مکعب از آن دارای وزن 10500 کیلوگرم می‌باشد. نقره در 961 درجه سانتیگراد ذوب شده و در حدود 2200 درجه سانتیگراد می‌جوشد.
طلا و نقره مانند محلولهای واقعی می‌توانند در هر نسبتی با یکدیگر مخلوط شده و آلیاژ تشکیل دهند. کیفیت نقره و یا بعبارت بهتر عیار آن بر حسب تعداد قسمت نقره خالص در 1000 قسمت مخلوط فلزات بیان می‌گردد و بطور معمول نقره تجاری دارای عیار 999 است.

تصویر

خواص شیمیایی نقره

اگرچه نقره از نظر شیمیایی در میان فلزات نجیب فلزی بسیار واکنش پذیر تلقی می‌گردد، لکن باید توجه داشت که در مقایسه با سایر عناصر از مرتبه واکنش پذیری قابل ملاحظه‌ای برخوردار نمی‌باشد. این عنصر به آسانی اکسیده شدن آهن اکسید نمی‌شود، لکن با گوگرد و هیدروژن سولفید واکنش داشته و تشکیل همان تیرگی آشنا را می‌دهد که در نقره‌هایتان ملاحظه می‌کنید.
برای رفع این نقیصه می‌توان آبکاری نقره را با کمک رودیم به انجام رسانیده و از وقوع تیرگی مورد نظر پیشگیری نمود همچنین با استفاده از کرم (Cream) یا پولیش نقره می‌توان لایه تیره بسیار نازکی را که نقره در ترکیب با گوگرد بوجود آورده است را زدوده و آن را مجددا براق نمود. از طرف دیگر این تیرگی را می‌توان از نظر شیمیایی بوسیله حرارت دادن ظرف مورد نظر در محلوا رقیقی از کلرید سدیم و کربنات هیدروژن سدیم یا قرار دادن قسمت تیره در تماس با فلزی فعالتر مانند آلومینیوم که می‌تواند با گوگرد ترکیب شود و مجددا فلز را به حالت اولیه برگرداند، از بین برد.
نقره نمی‌تواند با اسیدهای غیر اکسیدکننده مانند اسیدهای کلریدریک و سولفوریک یا بازهای قوی مانند هیدروکسید سدیم واکنش نماید، لکن اسیدهای اکسنده مانند اسید نیتریک یا اسید سولفوریک غلیظ آن را در خود حل کرده و یون یک مثبت نقره (+

Ag) را تشکیل می‌دهند. این یون که در کلیه ترکیبات ساده و محلول نقره وجود دارد، تقریبا بصورت ساده ای با استفاده از عوامل احیا کننده آلی مانند آنچه در آئینه های نقره ای ملاحظه می‌شود، به فلز آزاد احیا می‌گردد. برای آبکاری نقره لازم است یونهای کمپلکس نقره احیا شود. یون (+

Ag)بی‌رنگ است، لکن تعدادی از ترکیبات نقره بدلیل نفوذ سایر اجزای تشکیل دهنده ساختمانی رنگینند. باید توجه داشت که اکسیژن درحد حیرت انگیزی در نقطه ذوب نقره به میزان 20 قسمت حجمی از اکسیژن در یک قسمت حجمی نقره حل می‌شود. پس از سرد کردن مایع مورد نظر نیز اکسیژن به میزان 75% قسمت (از نظر حجمی) در نقره باقی می‌ماند.

تجزیه و شناسایی

محلولهای حاوی یون نقره را می‌توان به آسانی تشکیل رسوب کلرید نقره بوسیله افزایش اسید کلریدریک ، شناسایی کرد. این رسوب را می‌توان از رسوبهای سرب و جیوه یک ظرفیتی ، بوسیله قدرت حل شدن آن درهنگام افزودن هیدروکسید آمونیوم اضافی و ایجاد رسوب مجدد با افزودن اسید نیتریک متمایز نمود. مضافا تجزیه وزنی بوسیله کلرید نقره یا برمید نقره که به آسانی قابل رسوب دادن ، خشک کردن و توزین می‌باشند، میسر می‌باشد. همچنین می‌توان یون نقره را بوسیله عمل الکترولیز به نقره فلزی احیا و بدین روش توزین نمود. از محلول تیوسیانات پتاسیم استاندارد شده نیز می‌توان برای تجزیه حجمی نقره استفاده کرد.

ترکیبات نقره

نقره در ترکیباتش اکثرا بصورت یک ظرفیتی است. لکن اکسید ، فلوئورید و سولفید دو ظرفیتی نقره نیز ملاحظه شده است. تعدادی از ترکیبات مهم نقره عبارتند از:

  • نیترات نقره (AgNO_3): ترکیبی بی‌رنگ ، بسیار محلول ، اساسا سمی و به سادگی به نقره فلزی احیا می‌شود و از آن در تهیه ترکیبات نقره ، آئینه های نقره ، جوهرها استفاده می‌شود.


 

  • هیدروکسید دی آمین نقره Ag(NH_3)_2]OH]: ترکیب کوئوردیناسیونی محلول در آب که به وسیله افزودن هیدروکسید آمونیوم به محلولهای املاح نقره ، تشکیل می‌شود. این ترکیب در اثر ماندن تشکیل ترکیب بسیار منفجره نقره فولمینات شده را می‌دهد.


 

  • سیانید نقره (AgCN): مورد مصرف بوسیله سیانید سدیم یا پتاسیم اضافی در آبکاری برای تشکیل یونهای کمپلکس- Ag(CN)_3که به فلز نقره احیا می‌شوند.


 

  • کلرید نقره (AgCl): ترکیب سفید نامحلول که در هیدروکسید آمونیوم حل شده تشکیل یونهای کمپلکس +
    Ag(NH_3)_2 می‌دهد. در عکاسی و نیز بعنوان آشکار کننده یونیزاسیون برای اشعه های کیهانی، کاربرد دارد.


 

  • برمید نقره (ArBr): ترکیب نامحلول زرد روشن که نسبت به AgCl نامحلولتر است و بیشتر در عکاسی به مصرف می‌رسد.


 

  • یدید نقره (AgI): ترکیب نامحلول زرد رنگ و نامحلولتر از AgBr است و برای اصلاح وضعیت ابرها به منظور بارندگی (Cloud Seading) و در عکاسی کاربرد دارد.


 

  • سولفید نقره (Ag_2S): نامحلولترین نمک نقره ، سیاه رنگ و جزء اصلی تشکیل دهنده تیرگی ظروف نقره می‌باشد.


تصویر

کمپلکس های نقره

نقره یک ظرفیتی تعداد زیادی از ترکیبات پایدار کوئوردیناسیونی تشکیل می‌دهد. این ترکیبات اغلب دو کوئوردینانسی بوده، دارای دو گروه یونی یا مولکولی پیوسته به یک یون مرکزی +Ag مانند Ag(CN)_2 می‌باشند. کمپلکسهای کوئوردیناسی مانند -AgCl_3]

2] نیز شناخته شده‌اند و احتمالا کمپلکسهای چهار کوئوردیناسی مانند-AgCl_4]

3] در محلولها رخ می‌دهد. نقره دو ظرفیتی می‌تواند در برابر تجزیه ، بوسیله تشکیل یون +Ag

2 با استفاده از ترکیبات آلی مانند ارتو_ فنانترولین ، پیریدین و alpha' ،\alpha\ _ دی پیریدیل پایدار شود. یون نقره سه ظرفیتی (+Ag

3) نیز با استفاده از کمپلکس شدن به وسیله اتیلن دی بی گوایند پایدار می‌شود. از طرف دیگر کلیه فلزات ضرب سکه ، یعنی مس ، نقره و طلا به آسانی با موادیکه اتمهای نیتروژن ، گوگرد یا هالوژن برای اتصال با آنها تدارک می‌کنند، کمپلکس می‌شوند (در مقایسه با موادیکه تدارک اکسیژن می‌نمایند). بعنوان مثال کمپلکسهای نقره با یون هیدروکسید (در مقایسه با کمپلکسهای هیدروکسیدروی که کوئوردینانس‌شونده خوبی با اکسیژن هستند) خیلی پایدار نیستند، بنابراین اکسید نقره در محلولهای قوی هیدروکسید سدیم فقط به میزان کمی حل می شود، در حالیکه هیدروکسید روی با توجه به کوئوردیناسیون شدنش با هیدروکسید ، در آن حل می‌شود.

موارد کاربرد نقره

  • نقره در اغلب مصارفش با یک یا چند فلز ، آلیاژ شده و بدان صورت مصرف می‌شود. مهمترین مصرف این فلز در ضرب سکه است نقره همچنین دارای مصارف معروفی در زمینه جواهر سازی و ظروف نقره و نیز آب نقره است.


 

  • به دلیل ناپایداری در مقابل اسیدهایی غیر اکسنده به صورت بوته و یا سایر وسایل شیمیایی مصرف می‌شود و گاهی ابزار آلات جراحی ، لحیم نقره و باطریهای انباره‌ای مقاوم در برابر خوردگی را از نقره تهیه می‌کنند.


 

  • در آینه سازی به مقدار زیاد نقر ه مصرف می‌شود وهمچنین مقدار زیادی نقره برای تهیه نقره هالیدها در عکاسی مصرف می‌شود.


 

  • رسانایی عالی نقره موجب کاربرد هرچه بیشتر آن در الکتروتکنیک شده است. از آلیاژهایی که در آنها نقره بعنوان جزئی از کل مصرف می‌شود، می‌توان ملغمه‌های دندانپزشکی و پیستونهای موتور بلبرینگ را نام برد.


 

  • همچنین نقره دارای خواص قارچ‌کشی است و در مواردی از آن در فرایندهای سالمسازی (Sterilization) آب استفاده می‌شود.
+ نوشته شده در  یکشنبه پانزدهم دی 1387ساعت 15:28  توسط   | 

خبر شیمی

شیمی دان های دانشگاه شیکاگو برای اولین بار با استفاده از یک مدل آزمایشگاهی ساده که تنها شامل چند واکنش شیمیایی است قادر به پیش گویی زمان و مکان لخته شدن خون شده اند. به کمک این روش دانشمندان می توانند لخته شدن خون در آسیب های عروقی را در اندازه های ریز (میکرون) دنبال کنند. میکرون واحد اندازه گیری باریک تر از یک تار موی انسان است.
اگرچه دانشمندان اطلاعات زیادی در مورد 80 واکنش درگیر در فرآیند لخته شدن خون دارند اما هنوز سؤالات زیادی در مورد دینامیک تمامی واکنش ها باقی مانده است.
رستیم اسماگیلوف (Rustem Ismagilov) شیمی دان دانشگاه شیکاگو و همکارانش، روشی را گسترش داده اند که به کمک آن محققان می توانند نقش کمپلکس های حاکم بر واکنش های بیولوژیکی را درک کنند. مرگ و زندگی بستگی نزدیکی به لخته شدن خون کاملاً تنظیم شده و دقیق دارد. یک پاسخ لخته شدن سریع و مؤثر برای جلوگیری از خون ریزی در یک جراحت، ضروری است. اما لخته شدن مشابه در یک موضع اشتباه می توانند منجر به مسدود شدن عروق خونی و تهدید زندگی شود.
در گذشته دانشمندان لخته شدن خون در عروق را به کمک یک بالن دنبال می کردند اما مزیت مهم فناوری ریزسیالات، توانایی کنترل واکنش های پیچیده در مکان و زمان بحرانی است.
تاریخ شیمی دارای موارد زیادی از استفاده ی مدل های ساده برای فهم رفتار پیچیده است. در این تحقیق نیز دانشمندان به جای بررسی صدها معادله برای لخته شدن خون، آن را به سه معادله اصلی کاهش داده اند و از مطالعه این معادلات توانستند ویژگی های دینامیک زیادی از لخته شدن خون را توضیح دهند.
شیمی دان ها امیدوارند در آینده با استفاده از ریزسیالات به مطالعه سایر شبکه های پیچیده ای که اعمال بیولوژیکی مختلف را کنترل می کنند، بپردازند. در زمینه پزشکی نیز این روش راهی برای انجام سریع آزمایشات تشخیص باشد
+ نوشته شده در  دوشنبه نهم دی 1387ساعت 14:18  توسط   | 

پرتو کاتد

چگونگی شکل گیری پرتوهای کاتدی
وقتی مقدار گاز داخل لوله تخلیه الکتریکی کاهش می‌یابد، فضای تاریک کاتد ، بیشتر و ستون مثبت کوتاهتر و روشنایی آن کمتر می‌شود. با کاهش بیشتر فشار تابانی باز هم ضعیفتر می‌شود و شیشه لوله در مجاورت کاتد شروع به تابانی مختصری می‌کند. وقتی که فشار تا ۰.۰۰۱میلیمتر جیوه افت کند، تابانی گاز عملا متوقف می‌شود، درحالی که تمام سطح شیشه لوله ، نور درخشانی (معمولا سبز) گسیل می‌دارد.
اگر هوا باز هم با پمپ تخلیه بیشتر خارج شود، تابانی شیشه سبز ضعیف‌تر می‌شود. با شروع فشار از ۰.۰۰۰۰۱ تا ۰.۰۰۰۱ میلیمتر جیوه این تابانی بکلی محو می‌شود و تخلیه خاتمه می‌پذیرد.  

● تابانی سبز شیشه را چگو نه می‌توان توضیح داد؟
اگر به آند لوله تخلیه گاز ، شکل معینی داده شود، تصویر سایه آند بر شیشه ظاهر می‌شود، به ترتیبی که گویی کاتد ، چشمه نور کوچکی است. در نتیجه ، تابانی شیشه ، به دلیل تولید نور از پرتوهای گسیل شده از کاتد است. آنها از صفحه فلزی آند نمی‌گذرند و تصویر سایه آن بر شیشه تشکیل می‌شود. این پرتوها ، پرتوهای کاتدی نامیده شده‌اند.

● ظهور و آشکار سازی پرتوهای کاتدی
پرتوهای کاتدی ، نه فقط شیشه بلکه اجسام دیگر را نیز به تابانی وا می‌دارند. اجسام مختلف نوری ، رنگ‌های مختلف گسیل می‌دارند، مثلا گچ ، تابانی قرمز رنگ و سولفید روی ، نور سبز روشن ایجاد می‌کنند و نظایر آن. این تابانی را ، مثلا با قرار دادن تکه‌هایی از اجسام معدنی مختلف در بین کاتد و آند لامپ تخلیه گازی ، می‌توان مشاهده کرد. بنابرین ، اگر چه پرتوهای کاتدی ، نامرئی‌اند، می‌توان از تابانی اجسامی که با آنها بمباران شده‌اند، وجودشان را به سهولت آشکار کرد.
با پوشش سطح اجسام با اجسامی که بر اثر پرتوهای کاتدی تابان می‌شوند، پرده های لیمان بدست می‌آید ( لیمان Lumines Cent را از کلمه یونانی Lumen به معنی " نور " گرفته‌اند ) که برای مشاهده پرتوهای کاتدی ، مناسب هستند. در چنین صفحه ای ، در امتداد لوله در زاویه کوچکی نسبت به محور آن ، می‌توان امتداد پرتوهای کاتدی را در لوله به آسانی ردیابی کرد. برای سهولت مشاهده ، دریچهای با شکاف دراز ، جلوی پرده قرار می‌دهند. این دریچه ، بخشی از باریکه کاتدی را قطع می‌کند و رد روشن باریکی بر پرده لیمان باقی می‌گذارد.

 

● جنس پرتوی کاتدی
جنس پرتوهای کاتدی موقعی آشکار می شود که خواص آنها را از طریق آزمایش مطالعه نماییم. نتایج عمده آزمایشات خواص قابل ملاحظه پرتوهای کاتدی را بیان می کنند که آنها را مرور می کنیم.

 
● بار الکتریکی پرتوهای کاتدی:
پرتوهای کاتدی بار منفی دارند. واضح ترین این دلیل بیان آزمایشی است که در آن یک الکترود سوراخ دار مانند استوانه فارادی را به الکتروسکوپ حساسی متصل می کنند و آنرا در مسیر پرتوهای کاتدی قرار می دهند. پرتوهای کاتدی با وارد شدن به داخل استوانه تمام بار خود را به الکتروسکوب انتقال می دهند. تحلیل علامت بار و نحوه انحراف آن در میدان الکتریکی آشکار می سازد که پرتوهای کاتدی بار الکتریکی منفی دارند.

 

● نحوه انتشار پرتوهای کاتدی :
پرتوهای کاتدی در خطوط مستقیم و در امتداد عمود بر سطح کاتد منتشر می شوند. بنابراین اگر کاتد به شکل قسمتی از کره باشد، پرتوهای کاتدی در امتداد شعاعهای این کره انتشار می یابد در مرکز آن جمع می شوندکانونی شدن پرتو). اگر پرده ای لیا ن را در این ناحیه قرار دهیم، لکه روشنی بر آن مشاهده خواهد شد مکان این لکه از شکل و محل آند لامپ کاملا مستقل است.
بنابراین امتداد انتشار پرتوهای کاتدی به مکان آند بستگی ندارد. بهتر است بدانید که کاتد تخت باریکه ای از پرتوهای موازی ایجاد می کند در صورتی که کاتد کروی (کاو) پرتوهای کاتدی را "کانونی می کنند". این ویژگی پرتوهای کاتدی با نوع میدان الکتریکی در لامپ تخلیه گازی توضیح داده می شود. وجود افت کاتدی مبین این است که میدان الکتریکی در مجاورت کاتد خیلی قوی و در بقیه قسمتهای لوله بسیار ضعیف است، به این دلیل پرتوهای کاتدی ، که ذرات باردارند، در نزدیکی کاتد تخت تاثیر نیروهای بسیار قوی قرار می گیرند و در امتداد خطوط میدان می شوند. وی خطوط میدان بدون توجه به شکل آند و مکان آن ، بر سطح کاتد عمودند (همانند سطوح رساناها).
بنابراین پرتوهای کاتدی در نزدیکی کاتد در امتداد عمود بر سطح کاتد حرکت می کنند و تقریبا تمام سرعت عظیم خود را در مجاورت خیلی نزدیک کاتد به دست می آورند. بقیه حرکت عملا در امتداد خط مستقیم صورت می گیرد (توسط اینرسی). زیرا ، در فاصله دور از کاتد نیروهای کاتدی ناچیز هستند. میدان الکتریکی در نقاط دور از کاتد ضعیف است. مشاهدات اخیر نشان می دهد که پرتوهای کاتدی بنابر قوانین مکانیک منتشر می شوند، و از این رو جرم دارند.

 

● جرم پرتوهای کاتدی : 
ذرات کاتدی جرم دارند. این مطلب نیز به کمک آزمایش ویژه ای آشکار می شود. پروانه سبکی را که بر محوری متصل است طوری در مسیر پرتوهای کاتدی قرار می دهیم. که آنها (پرتوهای کاتدی) به تیغه های آن «کاتدها) برخورد کنند. بنابراین پروانه به چرخش در می آید، این امر حاکی از این است که پرتوهای کاتدی به آن (پروانه) اندازه حرکت mv داده اند (m جرم و v سرعت ذره است).

 

● پرتوهای کاتدی حامل انرژی :
پرتوهای کاتدی با بمباران اجسام و جذب شدن در آنها باعث گرم شدن این اجسام می شوند. اگر ورقه نازکی از قلع را در وسط کاتد کروی لامپ تخلیه گازی قرار دهیم، ورقه به شدت گرم و حتی ذوب می شود. آزمایش های مشابه نشان می دهند که پرتوهای کاتدی دارای انرژی جنبشی هستند و آن را به اجسامی که در معرض بمباران آنها قرار گیرند، انتقال می دهند. این چیزی است که انتظارش را داشتیم زیرا ذرات کاتدی جرم m دارند و با سرعت زیاد v حرکت می کنند.
هر ذره کاتدی باید انرژی جنبشی mv۲/۲ داشته باشد. و آن را به جسمی که با آن برخورد می کند، انتقال دهد. پرتوهای کاتدی ، با صرف این انرژی ، باعث تابانی صفحه لیان می شوند. آنها همچنین صفحه حساس عکاسی را سیاه می کنند و باعث واکنشهای شیمیایی می شوند.

 

● انحراف پرتوی کاتدی توسط میدان الکتریکی :
پرتوهای کاتدی توسط میدان الکتریکی منحرف می شوند. این اثر میدان الکتریکی بر پرتوهای کاتدی را می توان به آسانی پیش بینی کرد زیرا می دانیم که پرتوهای کاتدی بار الکتریکی دارند. به توسط آزمایش هایی این مفهوم نیز تایید شده است. و بار منفی آنها با این خاصیت اثبات می شود.

 

● انحراف پرتوی کاتدی توسط میدان مغناطیسی :
پرتوهای کاتدی توسط آهنربا منحرف می شوند. با نزدیک کردن آهنربا به باریکه نازک پرتوهای کاتدی ، می توان جابجایی رد آنها را روی پرده مشاهده کرد اگر در این آزمایش قطب شمال آهنربا در بالای باریکه باشد. پرتوهای کاتدی ، به سمت چپ منحرف می شوند و اگر در پایین باریکه (زیر باریکه) باشد، پرتوهای کاتدی به راست منحرف می گردند. اگر قطب شمال آهنربا نیز به طرف راست باریکه باشد، باریکه به سمت بالا منحرف می گردد و بر عکس .
اگر قطب جنوب آهنربا نزدیک باریکه شود، جهت انحراف باریکه معکوس می شود. این نتایج را این واقعیت که پرتوهای کاتدی از جریان بارهای منفی تشکیل شده اند و در امتداد لامپ حرکت می کنند، کاملا توجیه می کند. حرکت این بارها یک جریان الکتریکی تشکیل می دهند، و به خوبی می دانیم که جریان و آهنربا بر یکدیگر اثر می گذارند. انحراف پرتوهای کاتدی توسط آهنربا را می توان به صورت زیر تشریح نمود.
وقتی آهنربا به لامپ نزدیک شود، رد پرتوهای کاتدی بر پرده به طور محسوس خمیده می شود. باریکه های کاتدی که از شکافی گذشته، با نزدیک شدن آهنربا به لامپ منحرف شده و رد خم شده باریکه را می توان بر صفحه ای که در لامپ قرار دارد، مشاهده کرد. تمام خواص اخیر پرتوهای کاتدی که در بالا ذکر شد، بخصوص آزمایش های دقیقی که تامسون (j.Thomson) فیزیکدان انگلیسی ، انجام داد، ثابت می کنند که پرتوهای کاتدی از الکترون های سریعی تشکیل شده اند که از کاتد به طرف آند حرکت می کنند.
دلیل پیدایش پرتوهای کاتدی در لامپ تخلیه گازی ، بمباران شدید کاتد توسط یون های مثبت است که با ضربه الکترون هایی را از کاتد فلزی بیرون می کشند «الکترون کنی).

 

● شرط وجود پرتوهای کاتدی در لامپ تخلیه :
برای داشتن پرتوهای کاتدی لامپ تخلیه باید حاوی مقداری گاز باشد (هر چند خیلی کم ). بنابراین اگر لامپ تخلیه گازی بیشتر از حد لازم خلا شود، نه یونهای مثبت ظاهر می شود و نه پرتوهای کاتدی ، و گازی که به مقدار زیادی زیادی رقیق شده است دی الکتریک خوبی خواهد بود.
الکترونها با حرکت میان کاتد و آند توسط میدان الکتریکی شتاب می گیرند و سرعتهای زیادی کسب می کنند این سرعتها در میدان های بسیار شدید می توانند به ۱۰۵ کیلومتر بر ثانیه یا حتی بیشتر برسند که در شتاب دهنده های خاصی به سرعت نور خیلی نزدیک می شوند.

+ نوشته شده در  دوشنبه نهم دی 1387ساعت 14:16  توسط   | 

جدول تناوبی

گروه ۱ ۲
۳ ۴ ۵ ۶ ۷ ۸ ۹ ۱۰ ۱۱ ۱۲ ۱۳ ۱۴ ۱۵ ۱۶ ۱۷ ۱۸
ردیف
۱ ۱
H

۲
He
۲ ۳
Li
۴
Be


۵
B
۶
C
۷
N
۸
O
۹
F
۱۰
Ne
۳ ۱۱
Na
۱۲
Mg


۱۳
Al
۱۴
Si
۱۵
P
۱۶
S
۱۷
Cl
۱۸
Ar
۴ ۱۹
K
۲۰
Ca

۲۱
Sc
۲۲
Ti
۲۳
V
۲۴
Cr
۲۵
Mn
۲۶
Fe
۲۷
Co
۲۸
Ni
۲۹
Cu
۳۰
Zn
۳۱
Ga
۳۲
Ge
۳۳
As
۳۴
Se
۳۵
Br
۳۶
Kr
۵ ۳۷
Rb
۳۸
Sr

۳۹
Y
۴۰
Zr
۴۱
Nb
۴۲
Mo
۴۳
Tc
۴۴
Ru
۴۵
Rh
۴۶
Pd
۴۷
Ag
۴۸
Cd
۴۹
In
۵۰
Sn
۵۱
Sb
۵۲
Te
۵۳
I
۵۴
Xe
۶ ۵۵
Cs
۵۶
Ba
*
۷۱
Lu
۷۲
Hf
۷۳
Ta
۷۴
W
۷۵
Re
۷۶
Os
۷۷
Ir
۷۸
Pt
۷۹
Au
۸۰
Hg
۸۱
Tl
۸۲
Pb
۸۳
Bi
۸۴
Po
۸۵
At
۸۶
Rn
۷ ۸۷
 
Fr 
۸۸
Ra
**
۱۰۳
Lr
۱۰۴
Rf
۱۰۵
Db
۱۰۶
Sg
۱۰۷
Bh
۱۰۸
Hs
۱۰۹
Mt
۱۱۰
Ds
۱۱۱
Uuu
۱۱۲
Uub
۱۱۳
Uut
۱۱۴
Uuq
۱۱۵
Uup
۱۱۶
Uuh
۱۱۷
Uus
۱۱۸
Uuo

* لانتانیدها ۵۷
La
۵۸
Ce
۵۹
Pr
۶۰
Nd
۶۱
Pm
۶۲
Sm
۶۳
Eu
۶۴
Gd
۶۵
Tb
۶۶
Dy
۶۷
Ho
۶۸
Er
۶۹
Tm
۷۰
Yb
** آکتینیدها ۸۹
Ac
۹۰
Th
۹۱
Pa
۹۲
U
۹۳
Np
۹۴
Pu
۹۵
Am
۹۶
Cm
۹۷
Bk
۹۸
Cf
۹۹
Es
۱۰۰
Fm
۱۰۱
Md
۱۰۲
No
گروههای شیمیایی جدول تناوبی
قلیایی فلزیها قلیایی خاکیها لانتانیدها آکتینیدها فلزات انتقالی
فلزات ضعیف شبه فلزات غیر فلزات هالوژنها گازهای کامل

 

کد رنگ برای اعداد اتمی:

  • عناصر شماره گذاری شده با رنگ آبی ، در دمای اتاق مایع هستند؛
  • عناصر شماره گذاری شده با رنگ سبز ، در دمای اتاق بصورت گاز می‌‌باشند؛
  • عناصر شماره گذاری شده با رنگ سیاه، در دمای اتاق جامد هستند.
  • عناصر شماره گذاری شده با رنگ قرمز ترکیبی بوده و بطور طبیعی یافت نمی‌شوند(همه در دمای اتاق جامد هستند).
  • عناصر شماره گذاری شده با رنگ خاکستری ، هنوز کشف نشده‌اند (و بصورت کم رنگ نشان داده شده‌اند تا گروه شیمیایی را که در آن قرار می‌‌گیرند، مشخص نماید).
+ نوشته شده در  پنجشنبه هفتم آذر 1387ساعت 20:22  توسط   |